Search
Sensors

Powered Kite with Enhanced Aerial Position Control
Skyvator offers enhanced positional capabilities. Skyvator can perform maneuvers such as pointing into or perpendicular to the wind, maintaining level flight, climbing, descending, and station-keeping at desired altitudes. These movements are enabled by the power system, incorporated in the wing or other location on the kite, which are attached to the controller, and in turn is connected to one or more actuators, such as motors and drivers. These motors and drivers can be located in various portions of the kite to cause one part or another to move. Additionally, the controller can be connected to one or more instrument systems for data collection and measurement purposes. These include sensors for detecting windspeed, direction, pressure, GPS, temperature, humidity, imagers, atmospheric particle detectors, and gas detectors, among others. The improved positional control and information allows a user to collect data more effectively and accurately.Skyvator is designed to be used across a wide range of altitudes, from a few feet above the ground to over 18,000 feet above the surface. Additionally, Skyvator prototypes have demonstrated the ability to maintain stready, controllable flight exceeding 60 – 70 mph winds. Please note that NASA does not manufacturer products itself for commercial sale.
Environment

TerraROVER
The TerraROVER’s core functionality is centered around its electric propulsion system, enabling it to traverse various outdoor environments. Its drive system consists of electric motors and gearboxes that provide controlled speed and maneuverability. The remote-control interface allows users to adjust speed and direction, making it an effective platform for training and testing mobility systems. For advanced applications, the TerraROVER can be adapted for pre-programmed or autonomous navigation, expanding its use in robotics and automation research.
A key design feature of the TerraROVER is its adaptability for sensor integration. It includes mounting provisions for miniaturized sensors capable of capturing environmental data such as temperature, GPS location, and visual imagery. The platform supports both onboard data logging and real-time transmission, making it suitable for field studies, distributed sensing applications, and educational experiments. Fabrication is streamlined through the use of 3D-printed components, allowing for cost-effective production and easy assembly in classroom or research settings. Currently at Technology Readiness Level (TRL) 7, the system has been successfully demonstrated in an operational environment and is available for patent licensing.